Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Healthc Mater ; 10(12): e2100113, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33963821

RESUMO

During bone remodeling, osteoblasts are known to deposit unmineralized collagenous tissue (osteoid), which mineralizes after some time lag. Some of the osteoblasts differentiate into osteocytes, forming a cell network within the lacunocanalicular network (LCN) of bone. To get more insight into the potential role of osteocytes in the mineralization process of osteoid, sites of bone formation are three-dimensionally imaged in nine forming human osteons using focused ion beam-scanning electron microscopy (FIB-SEM). In agreement with previous observations, the mineral concentration is found to gradually increase from the central Haversian canal toward pre-existing mineralized bone. Most interestingly, a similar feature is discovered on a length scale more than 100-times smaller, whereby mineral concentration increases from the LCN, leaving around the canaliculi a zone virtually free of mineral, the size of which decreases with progressing mineralization. This suggests that the LCN controls mineral formation but not just by diffusion of mineralization precursors, which would lead to a continuous decrease of mineral concentration from the LCN. The observation is, however, compatible with the codiffusion and reaction of precursors and inhibitors from the LCN into the bone matrix.


Assuntos
Ósteon , Osteócitos , Remodelação Óssea , Osso e Ossos , Humanos , Minerais
2.
Biomech Model Mechanobiol ; 19(3): 823-840, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31782029

RESUMO

A popular hypothesis explains the mechanosensitivity of bone due to osteocytes sensing the load-induced flow of interstitial fluid squeezed through the lacunocanalicular network (LCN). However, the way in which the intricate structure of the LCN influences fluid flow through the network is largely unexplored. We therefore aimed to quantify fluid flow through real LCNs from human osteons using a combination of experimental and computational techniques. Bone samples were stained with rhodamine to image the LCN with 3D confocal microscopy. Image analysis was then performed to convert image stacks into mathematical network structures, in order to estimate the intrinsic permeability of the osteons as well as the load-induced fluid flow using hydraulic circuit theory. Fluid flow was studied in both ordinary osteons with a rather homogeneous LCN as well as a frequent subtype of osteons-so-called osteon-in-osteons-which are characterized by a ring-like zone of low network connectivity between the inner and the outer parts of these osteons. We analyzed 8 ordinary osteons and 9 osteon-in-osteons from the femur midshaft of a 57-year-old woman without any known disease. While the intrinsic permeability was 2.7 times smaller in osteon-in-osteons compared to ordinary osteons, the load-induced fluid velocity was 2.3 times higher. This increased fluid velocity in osteon-in-osteons can be explained by the longer path length, needed to cross the osteon from the cement line to the Haversian canal, including more fluid-filled lacunae and canaliculi. This explanation was corroborated by the observation that a purely structural parameter-the mean path length to the Haversian canal-is an excellent predictor for the average fluid flow velocity. We conclude that osteon-in-osteons may be particularly significant contributors to the mechanosensitivity of cortical bone, due to the higher fluid flow in this type of osteons.


Assuntos
Ósteon/fisiologia , Imageamento Tridimensional , Microscopia Confocal/métodos , Osteócitos/metabolismo , Osso e Ossos/metabolismo , Feminino , Fêmur/fisiologia , Humanos , Processamento de Imagem Assistida por Computador , Pessoa de Meia-Idade , Modelos Teóricos , Permeabilidade , Rodaminas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...